CHAPTER

EUCLID’S
GEOMETRY

The postulate on parallels . . . was in antiquity the
final solution of a problem that must have preoccupied
Greek mathematics for a long period before Euclid.

HANS FREUDENTHAL

THE ORIGINS OF GEOMETRY

The word “geometry” comes from the Greek geometrein (geo-,
“earth,” and metrein, ‘‘to measure’); geometry was originally the
science of measuring land. The Greek historian Herodotus (5th cen-
tury B.C.) credits Egyptian surveyors with having originated the sub-
ject of geometry, but other ancient civilizations (Babylonian, Hindu,
Chinese) also possessed much geometric information.

Ancient geometry was actually a collection of rule-of-thumb proce-
dures arrived at through experimentation, observation of analogies,
guessing, and occasional flashes of intuition. In short, it was an empir-
ical subject in which approximate answers were usually sufficient for
practical purposes. The Babylonians of 2000 to 1600 B.c. considered
the circumference of a circle to be three times the diameter; i.c., they
took 7 to be equal to 3. This was the value given by the Roman
architect Vitruvius and it is found in the Chinese literature as well. It
was even considered sacred by the ancient Jews and sanctioned in
scripture (I Kings 7:23) — an attempt by Rabbi Nehemiah to change
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the value of 7 to 2 was rejected. The Egyptians of 1800 B.C., according
to the Rhind papyrus, had the approximation 7 ~ (1£)% ~ 3.1604.!

Sometimes the Egyptians guessed correctly, other times not. They
found the correct formula for the volume of a frustum of a square
pyramid —a remarkable accomplishment. On the other hand, they
thought that a formula for area that was correct for rectangles applied
to any quadrilateral. Egyptian geometry was not a science in the Greek
sense, only a grab bag of rules for calculation without any motivation or
justification.

The Babylonians were much more advanced than the Egyptians in
arithmetic and algebra. Moreover, they knew the Pythagorean
theorem —in a right triangle the square of the length of the hypote-
nuse is equal to the sum of the squares of the lengths of the legs — long
before Pythagoras was born. Recent research by Otto Neugebauer has
revealed the heretofore unknown Babylonian algebraic influence on
Greek mathematics.

However, the Greeks, beginning with Thales of Miletus, insisted
that geometric statements be established by deductive reasoning
rather than by trial and error. Thales was familiar with the computa-
tions, partly right and partly wrong, handed down from Egyptian and
Babylonian mathematics. In determining which results were correct,
he developed the first logical geometry (Thales is also famous for
having predicted the eclipse of the sun in 585 B.c.). The orderly
development of theorems by proof was characteristic of Greek mathe-
matics and entirely new.

The systematization begun by Thales was continued over the next
two centuries by Pythagoras and his disciples. Pythagoras was re-
garded by his contemporaries as a religious prophet. He preached the
immortality of the soul and reincarnation. He organized a brotherhood
of believers that had its own purification and initiation rites, followed a
vegetarian diet, and shared all property communally. The Pythago-
reans differed from other religious sects in their belief that elevation of

! In recent years 7 has been approximated to a very large number of decimal places by
computers; to five places, 7 is approximately 3.14159. In 1789 Johann Lambert proved that 7
was not equal to any fraction (rational number), and in 1882 F. Lindemann proved that nis a
transcendental number, in the sense that it does not satisfy any algebraic equation with rational
coefficients, which implies that in the Euclidean plane, it is impossible to square a circle using
only straightedge and compass.
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the soul and union with God are achieved by the study of music and
mathematics. In music, Pythagoras calculated the correct ratios of the
harmonic intervals. In mathematics, he taught the mysterious and
wonderful properties of numbers. Book VII of Euclid’s Elements is the
text of the theory of numbers taught in the Pythagorean school.

The Pythagoreans were greatly shocked when they discovered irra-
tional lengths, such as V2 (see Chapter 2, pp. 43-44). At first they
tried to keep this discovery secret. The historian Proclus wrote: “It is
well known that the man who first made public the theory of irration-
als perished in a shipwreck, in order that the inexpressible and unima-
ginable should ever remain veiled.” Since the Pythagoreans did not
consider 2 a number, they transmuted their algebra into geometric
form in order to represent v2 and other irrational lengths by segments
(V2 by a diagonal of the unit square).

The systematic foundation of plane geometry by the Pythagorean
school was brought to a conclusion around 400 B.C. in the E/ements by
the mathematician Hippocrates (not to be confused with the physician
of the same name). Although this treatise has been lost, we can safely
say that it covered most of Books I-1V of Euclid’s Elements, which
appeared about a century later. The Pythagoreans were never able to
develop a theory of proportions that was also valid for irrational
lengths. This was later achieved by Eudoxus, whose theory was incor-
porated into Book V of Euclid’s Elements.

The fourth century B.c. saw the flourishing of Plato’s Academy of
science and philosophy (founded about 387 B.C.). In the Republic Plato
wrote, ‘“The study of mathematics develops and sets into operation a
mental organism more valuable than a thousand eyes, because
through it alone can truth be apprehended.” Plato taught that the
universe of ideas is more important than the material world of the
senses, the latter being only a shadow of the former. The material
world is an unlit cave on whose walls we see only shadows of the real,
sunlit world outside. The errors of the senses must be corrected by
concentrated thought, which is best learned by studying mathematics.
The Socratic method of dialog is essentially that of indirect proof, by
which an assertion is shown to be invalid if it leads to a contradiction.
Plato repeatedly cited the proof for the irrationality of the length of a
diagonal of the unit square as an illustration of the method of indirect
proof (the reductio ad absurdum—see Chapter 2, pp. 42-44). The
point is that this irrationality of length could never have been discov-
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ered by physical measurements, which always include a small experi-
mental margin of error.

Euclid was a disciple of the Platonic school. Around 300 B.c. he
produced the definitive treatment of Greek geometry and number
theory in his 13-volume Elements. In compiling this masterpiece Eu-
clid built on the experience and achievements of his predecessors in
preceding centuries: on the Pythagoreans for Books I-1V, VII, and
IX, Archytas for Book VIII, Eudoxus for Books V, VI, and XII, and
Theaetetus for Books X and XIII. So completely did Euclid’s work
supersede earlier attempts at presenting geometry that few traces
remain of these efforts. It’s a pity that Euclid’s heirs have not been
able to collect royalties on his work, for he is the most widely read
author in the history of mankind. His approach to geometry has domi-
nated the teaching of the subject for over two thousand years. More-
over, the axiomatic method used by Euclid is the prototype for all of
what we now call “‘pure mathematics.” It is pure in the sense of “‘pure
thought™: no physical experiments need be performed to verify that
the statements are correct — only the reasoning in the demonstrations
need be checked.

Euclid’s Elements is pure also in that the work includes no practical
applications. Of course, Euclid’s geometry has had an enormous num-
ber of applications to practical problems in engineering, but they are
not mentioned in the Elements. According to legend, a beginning
student of geometry asked Euclid, “What shall I get by learning these
things?”’ Euclid called his slave, saying, “Give him a coin, since he
must make gain out of what he learns.” To this day, this attitude
toward application persists among many pure mathematicians — they
study mathematics for its own sake, for its intrinsic beauty and ele-
gance (see essay topics 5 and 8 in Chapter 8).

Surprisingly enough, as we will see later, pure mathematics often
turns out to have applications never dreamt of by its creators —the
“impractical” outlook of pure mathematicians is ultimately useful to
society. Moreover, those parts of mathematics that have not been
“applied” are also valuable to society, either as aesthetic works com-
parable to music and art or as contributions to the expansion of human
consciousness and understanding.?

2 For more detailed information on ancient mathematics, see Bartel van der Waerden
(1961).
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THE AXIOMATIC METHOD

Mathematicians can make use of trial and error, computation of spe-
cial cases, inspired guessing, or any other way to discover theorems.
The axiomatic method is a method of proving that results are correct.
Some of the most important results in mathematics were originally
given only incomplete proofs (we shall see that even Euclid was guilty
of this). No matter — correct proofs would be supplied later (some-
times much later) and the mathematical world would be satisfied.

So proofs give us assurance that results are correct. In many cases
they also give us more general results. For example, the Egyptians and
Hindus knew by experiment that if a triangle has sides of lengths 3, 4,
and 5, it is a right triangle. But the Greeks proved that if a triangle has
sides of lengths &, 4, and c and if @ + 4 = (2, then the triangle is a
right triangle. It would take an infinite number of experiments to
check this result (and, besides, experiments only measure things
approximately). Finally, proofs give us tremendous insight into rela-
tionships among different things we are studying, forcing us to orga-
nize our ideas in a coherent way. You will appreciate this by the end of
Chapter 6 (if not sooner).

What is the axiomatic method? If I wish to persuade you by pure
reasoning to believe some statement S;, I could show you how this
statement follows logically from some other statement §, that you may
already accept. However, if you don’t believe S, I would have to show
you how S, follows logically from some other statement §;. I might
have to repeat this procedure several times until I reach some state-
ment that you already accept, one I do not need to justify. That
statement plays the role of an axiom (or postulate). If I cannot reach a
statement that you will accept as the basis of my argument, I will be
caught in an “infinite regress,” giving one demonstration after an-
other without end.

So there are two requirements that must be met for us to agree that
a proof is correct:

REQUIREMENT 1. Acceptance of certain statements called ‘‘axioms,”
or “‘postulates,” without further justification.

REQUIREMENT 2. Agreement on how and when one statement ““fol-
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lows logically” from another, i.c., agreement on certain rules of rea-
soning.

Euclid’s monumental achievement was to single out a few simple
postulates, statements that were acceptable without further justifica-
tion, and then to deduce from them 465 propositions, many compli-
cated and not at all intuitively obvious, which contained all the geo-
metric knowledge of his time. One reason the Elements is such a
beautiful work is that so much has been deduced from so little.

UNDEFINED TERMS

We have been discussing what is required for us to agree that a proof is
correct. Here is one requirement that we took for granted:

REQUIREMENT 0. Mutual understanding of the meaning of the words
and symbols used in the discourse.

There should be no problem in reaching mutual understanding so
long as we use terms familiar to both of us and use them consistently. If
I use an unfamiliar term, you have the right to demand a defnition of
this term. Definitions cannot be given arbitrarily; they are subject to
the rules of reasoning referred to (but not specified) in Requirement
2. If, for example, I define a right angle to be a 90° angle, and then
define a 90° angle to be a right angle, I would violate the rule against
circular reasoning.

Also, we cannot define every term that we use. In order to define
one term we must use othef terms, and to define these terms we must
use still other terms, and so on. If we were not allowed to leave some
terms #ndefined, we would get involved in infinite regress.

Euclid did attempt to define all geometric terms. He defined a
“straight line” to be “that which lies evenly with the points on itself.”
This definition is not very useful; to understand it you must already
have the image of a line. So it is better to take “line’’ as an undefined
term. Similarly, Euclid defined a ““point” as ‘‘that which has no part”
—again, not very informative. So we will also accept “point” as an
undefined term. Here are the five undefined geometric terms that are
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the basis for defining all other geometric terms in plane Euclidean
geometry:

point

line

Jie on (as in “‘two points /ie on a unique line”)
berween (as in “‘point C is between points A and B”’)
congruent

For solid geometry, we would have to introduce a further undefined
geometric term, “plane,” and extend the relation “lie on” to allow
points and lines to lic on planes. I this book (unless otherwise stated) we
will restrict our attention to plane geometry, i.¢., to one single plane. So
we define ke plane to be the set of all points and lines, all of which are
said to “‘lie on” it.

There are expressions that are often used synonymously with “lie
on.” Instead of saying ‘‘point P Jes on line /;” we sometimes say **/
passes through P ot ‘P is incident with /,”” denoted P1/. If point P lies on
both line /and line m, we say that ““/and m Aave point P 1n common” or
that ““/ and m intersect (or meet) in the point P.”

The second undefined term, “line,” is synonymous with “‘straight
line.” The adjective *“‘straight’ is confusing when it modifies the noun
“line,” so we won’t use it. Nor will we talk about “‘curved lines.”
Although the word *‘line” will not be defined, its use will be restricted
by the axioms for our geometry. For instance, one axiom states that
two given points lie on only one line. Thus, in Figure 1.1, /and m
could not both represent lines in our geometry, since they both pass
through the points P and Q.

FIGURE 1.1 m

There are other mathematical terms that we will use that should be
added to our list of undefined terms, since we won’t define them; they
have been omitted because they are not specifically geometric in
nature, but are rather what Euclid called ‘“‘common notions.”” Never-
theless, since there may be some confusion about these terms, a few
remarks are in order.
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The word “‘set” is fundamental in all of mathematics todays; it is
now used in elementary schools, so undoubtedly you are familiar with
its use. Think of itas a ““collection of objects.” Two related notions are
“belonging to” a set or “‘being an element (or member) of ’ aset, as in
our convention that all points and lines e/ong to the plane. If every
element of a set § is also an element of a set 7, we say that S is
“contained in” or “‘part of ” or “‘a subset of ’ 7. We will define
“segment,” ‘“‘ray,” ‘“circle,” and other geometric terms to be certain
sets of points. A “line,”” however, is not a set of points in our treatment
(for reasons of duality in Chapter 2). When we need to refer to the set
of all points lying on a line /, we will denote that set by {/}.

In the language of sets we say that sets § and 7 are equa/ if every
member of §is a member of 7, and vice versa. For example, the set S of
all authors of Euclid’s Elements is (presumably) equal to the set whose
only member is Euclid. Thus, “equal” means “identical.”

Euclid used the word “‘equal” in a different sense, as in his assertion
that “‘base angles of an isosceles triangle are e¢qual.”” He meant that
base angles of an isosceles triangle have an equal number of degrees,
not that they are identical angles. So to avoid confusion we will not use
the word ““equal” in Euclid’s sense. Instead, we will use the undefined
term “‘congruent’ and say that ‘‘base angles of an isosceles triangle are
congruent.”’ Similarly, we don’t say that “if AB equals AC, then AABC
isisosceles.” (If AB equals AC, following our use of the word “equals,”
AABC is not a triangle at all, only a segment.) Instead, we would say
that “if AB is congruent to AC, then A ABC is zsosceles.” This use of the
undefined term “congruent” is more general than the one to which
you are accustomed; it applies not only to triangles but to angles and
segments as well. To understand the use of this word, picture con-

_gruent objects as “‘having the same size and shape.”

Of course, we must specify (as Euclid did in his “‘common notions”’)
that “‘a thing is congruent to itself,” and that “things congruent to the
same thing are congruent to each other.” Statements like these will
later be included among our axioms of congruence (Chapter 3).

The list of undefined geometric terms shown earlier in this section
is due to David Hilbert (1862 - 1943). His treatise The Foundations of
Geometry (1899) not only clarified Euclid’s definitions but also filled
in the gaps in some of Euclid’s proofs. Hilbert recognized that Euclid’s
proof for the side-angle-side criterion of congruence in triangles was
based on an unstated assumption (the principle of superposition), and
that this criterion had to be treated as an axiom. He also built on the



14 | ’ | Euclid’s Geometry

earlier work of Moritz Pasch, who in 1882 published the first rigorous
treatise on geometry; Pasch made explicit Euclid’s unstated assump-
tions about betweenness (the axioms on betweenness will be studied
in Chapter 3). Some other mathematicians who worked to establish
rigorous foundations for Euclidean geometry are: G. Peano, M. Pieri,
G. Veronese, O. Veblen, G. de B. Robinson, E. V. Huntington, and
H. G. Forder. These mathematicians used lists of undefined terms
different from the one used by Hilbert. Pieri used only two undefined
terms {as a result, however, his axioms were more complicated). The
selection of undefined terms and axioms is arbizrary; Hilbert’s selec-
tion is popular because it leads to an elegant development of geometry
similar to Euclid’s presentation.

EUCLID’S FIRST FOUR POSTULATES

Euclid based his geometry on five fundamental assumptions, called
axtoms or postulates.

EUCLID’S POSTULATE I. For every point P and for every point Q not
equal to P there exists a unique line / that passes through P and Q.

This postulate is sometimes expressed informally by saying “‘two
points determine a unique line.”” We will denote the unique line that
passes through P and Q by ﬁé

To state the second postulate, we must make our first definition.

DEFINITION. Given two points A and B. The segment AB is the set
whose members are the points A and B and all points that lie on the
line AB and are between A and B (Figure 1.2). The two given points A
and B are called the endpoints of the segment AB.3

p

Segment A B

- ®

FIGURE 1.2 A

» Linc AB

Oe
w e

3 Warning on notation: In many high school geometry texts the notation AB is used for
“‘segment AB.”
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EUCLID’S POSTULATE II. For every segment AB and for every seg-
ment CD there exists a unique point E such that B is between A and E
and segment CD is congruent to segment BE (Figure 1.3).

ad

C D

L

A
FIGURE 1.3 CD =BE.

we
mJ»

This postulate is sometimes expressed informally by saying that
“any segment AB can be extended by a segment BE congruent to a
given segment CD.” Notice that in this postulate we have used the
undefined term “‘congruent” in the new way, and we use the usual
notation CD = BE to express the fact that CD is congruent to BE.

In order to state the third postulate, we must introduce another
definition.

DEFINITION. Given two points O and A. The set of all points P such
that segment OP is congruent to segment OA is called a czrele with O as
center, and each of the segments OP is called a radsus of the circle.

It follows from Euclid’s previously mentioned common notion (“a
thing is congruent to itself ”’) that OA = OA, so Ais also a point on the
circle just defined.

EUCLID’S POSTULATE III.  For every point O and every point A not
equal to O there exists a circle with center O and radius OA (Figure
1.4).

FIGURE 1.4 Circle with center O and radius OA.
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Actually, because we are using the language of sets rather than that
of Euclid, it is not really necessary to assume this postulate; it is a
consequence of set theory that the set of all points P with OP = OA
exists. Euclid had in mind drawing the circle with center O and radius
OA, and this postulate tells you that such a drawing is allowed, for
example, with a compass. Similarly, in Postulate II you are allowed to
extend segment AB by drawing segment BE with a straightedge. Our
treatment “purifies” Euclid by eliminating references to drawing in
our proofs.* But you should review the straightedge and compass
constructions in Major Exercise 1.

DEFINITION. The ray AB is the following set of points lying on the
line AB: those points that belong to the segment AB and all points Con

such that B is between A and C. The ray AB is said to emanate from
the vertex A and to be part of line AB. (See Figure 1.5.)

A
FIGURE 1.5 Ray AB.

DEFINITION. Rays AB and AC are opposite if they are distinct, if they
emanate, from the same point A, and if they are part of the same line
AB = AC (Figure 1.6.).

4 However, it is a fascinating mathematical problem to determine just what geometric
constructions are possible using only a compass and straightedge. Not until the nineteenth
century was it proved that such constructions as trisecting an arbitrary angle, squaring a circle, or
doubling a cube were impossible using only a compass and straightedge. Pierre Wantzel proved
this by translating the geometric problem into an algebraic problem; he showed that straight-
edge and compass constructions correspond to a solution of certain algebraic equations using
only the operations of addition, subtraction, multiplication, division, and extraction of square
roots. For the particular algebraic equations obtained from, say, the problem of trisecting an
arbitrary angle, such a solution is impossible because cube roots are needed. Of course, it is
possible to trisect angles using other instruments, such as a marked straightedge and compass
(see Major Exercise 3 and Projects 1, 2, and 4), and J. Bolyai proved thatin the hyperbolic plane,
it is possible to “‘square” the circle-
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B
FIGURE 1.6 Opposite rays.

> ¢
~

DEFINITION. An “angle with vertex A” is a point A together with two
distinct nonopposite rays AB and AC (called the sides of the angle)
emanating from A.5 (See Figure 1.7.)

FIGURE 1.7 Angle with vertex A.

We use the notations <A, <BAC, or <CAB for this angle.

DEFINITION. If two angles <BAD g_gd <CAD have a common side
AD and the other two sides A and AC form opposite rays, the angles
are supplements of each other, or supplementary angles (Figure 1.8).

B A C
FIGURE 1.8 Supplementary angles.

DEFINITION. Anangle <BAD is a right angle if it has a supplementary
angle to which it is congruent (Figure 1.9).

5 According to this definition, there is no such thing as a “straight angle.” We eliminated this
expression because most of the assertions we will make about angles do not apply to “straight
angles.” The definition excludes zero angles as well.
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FIGURE 1.9 Right angles <BAD = XCAD.
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We have thus succeeded in defining a right angle without referring to
“degrees,” by using the undefined notion of congruence of angles.
“Degrees’’ will not be introduced formally until Chapter 4, although
we will occasionally refer to them in informal discussions.

We can now state Euclid’s fourth postulate.

EUCLID’S POSTULATE IV. All right angles are congruent to each
other.

This postulate expresses a sort of homogeneity; even though two
right angles may be “very far away” from each other, they neverthe-
less ““have the same size.” The postulate therefore provides a natural
standard of measurement for angles.®

THE PARALLEL POSTULATE

Euclid’s first four postulates have always been readily accepted by
mathematicians. The fifth (parallel) postulate, however, was highly
controversial. In fact, as we shall see later, consideration of alterna-
tives to Euclid’s parallel postulate resulted in the development of
non-Euclidean geometries.

At this point we are not going to state the fifth postulate in its
original form, as it appeared in the E/ements. Instead, we will present a
simpler postulate (which we will later show is logically equivalent to
Euclid’s original). This version is sometimes called Playfair’s postulate

¢ On the contrary, there is no natural standard of measurement for /engrhs in Euclidean
geometry. Units of length (one foot, one meter, etc.) must be chosen arbitrarily. The remarkable
fact about hyperbolic geometry, on the other hand, is that it does admit a natural standard of
length (see Chapter 6).
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because it appeared in John Playfair’s presentation of Euclidean ge-
ometry, published in 1795 — although it was referred to much earlier
by Proclus (A.D. 410-485). We will call it #4¢ Euclidean parallel postu-
Jate because it distinguishes Euclidean geometry from other geome-
tries based on parallel postulates. The most important definition in

this book is the following:

DEFINITION. Two lines /and m are paralle/ if they do not intersect,
i.e., if no point lies on both of them. We denote this by /|| m.

Notice first that we assume the lines lie in the same plane (because
of our convention that all points and lines lie in one plane, unless
stated otherwise; in space there are noncoplanar lines which fail to
intersect and they are called séew /ines, not “parallel’’). Notice sec-
ondly what the definition does 7o say: it does not say that the lines are
equidistant, i.e., it does not say that the distance between the two lines
is everywhere the same. Don’t be misled by drawings of parallel lines
in which the lines appear to be equidistant. We want to be rigorous
here and so should not introduce into our proofs assumptions that have
not been stated explicitly. At the same time, don’t jump to the conclu-
sion that parallel lines are nof equidistant. We are not committing
ourselves either way and shall reserve judgment until we study the
matter further. At this point, the only thing we know for sure about
parallel lines is that they do not meet.

THE EUCLIDEAN PARALLEL POSTULATE. For every line / and for
every point P that does not lie on /there exists a unique line 7 through
P that is parallel to /. (See Figure 1.10.)

FIGURE 1.10 Lines /and m are parallel.

Why should this postulate be so controversial? It may seem “obvi-
ous’’ to you, perhaps because you have been conditioned to think in
Euclidean terms. However, if we consider the axioms of geometry as
abstractions from experience, we can see a difference between this



20 I | | Euclid’s Geometry

postulate and the other four. The first two postulates are abstractions
from our experiences drawing with a straightedge; the third postulate
derives from our experiences drawing with a compass. The fourth
postulate is perhaps less obvious as an abstraction; nevertheless it
derives from our experiences measuring angles with a protractor
(where the sum of supplementary angles is 180°, so that if supple-
mentary angles are congruent to each other, they must each measure
90°).

The fifth postulate is different in that we cannot verify empirically
whether two lines meet, since we can draw only segments, not lines.
We can extend the segments further and further to see if they meet,
but we cannot go on extending them forever. Our only recourse is to
verify parallelism indirectly, by using criteria other than the defini-
tion.

What is another criterion for /to be parallel to 7? Euclid suggested
drawing a fransversal (i.e., a line ¢ that intersects both /and » in
distinct points), and measuring the number of degrees in the interior
angles & and f on one side of # Euclid predicted that if the sum of
angles « and f turns out to be less than 180°, the lines (if produced
sufficiently far) would meet on the same side of 7as angles a and § (see
Figure 1.11). This, in fact, is the content of Euclid’s fifth postulate.

FIGURE 1.11

The trouble with this criterion for parallelism is that it turns out to
be logically equivalent to the Euclidean parallel postulate that was
just stated (see the section Equivalence of Parallel Postulates in
Chapter 4.). So we cannot use this criterion to convince ourselves of
the correctness of the parallel postulate — that would be circular rea-
soning. Euclid himself recognized the questionable nature of the
parallel postulate, for he postponed using it for as long as he could
(until the proof of his 29th proposition).
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ATTEMPTS TO PROVE THE
PARALLEL POSTULATE

Remember that an axiom was originally supposed to be so simple and
intuitively obvious that no one could doubt its validity. From the very
beginning, however, the parallel postulate was attacked as insuffi-
ciently plausible to qualify as an unproved assumption. For two thou-
sand years mathematicians tried to derive it from the other four postu-
lates or to replace it with another postulate, one more self-evident. All
attempts to derive it from the first four postulates turned out to be
unsuccessful because the so-called proofs always entailed a hidden
assumption that was unjustifiable. The substitute postulates, pur-
portedly more self-evident, turned out to be logically equivalent to the
parallel postulate, so that nothing was gained by the substitution. We
will examine these attempts in detail in Chapter 5, for they are very
instructive. For the moment, let us consider one such effort.

The Frenchman Adrien Marie Legendre (1752 -1833) was one of
the best mathematicians of his time, contributing important discover-
ies to many different branches of mathematics. Yet he was so obsessed
with proving the parallel postulate that over a period of 29 years he
published one attempt after another in different editions of his £/-
ments de Géométrie.” Here is one attempt (see Figure 1.12):

FIGURE 1.12

Given P not on line /. Drop perpendicular PQ from Pto/at Q. Let m
be the line through P perpendicular to PQ. Then m is parallel to /,

7 Davies’ translation of the E/éments was the most popular geometry textbook in the United
States during the nineteenth century. Legendre is best known for the method of least squares in
statistics, the law of quadratic reciprocity in number theory, and the Legendre polynomials in
differential equations. His attempts to prove the parallel postulate led to two important theor-
ems in neutral geometry (see Chapter 4).
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Adrien Marie Legendre

since /and m have the common perpendicular ﬁ@ Let 7 be any line
through P distinct from 7 and PQ. We must show than #» meets /. Let
PR be a ray of » between P_Q and a ray of m emanating from P. There is
a point R’ on the opposite side of 136 from R such that XQPR’ =
XQPR. Then Q lies in the interior of <RPR’. Since line / passes
through the point Q interior to <RPR’, / must intersect one of the
sides of this angle. If / meets side l-)ﬁ, then certainly / meets 7. Sup-
pose / meets side PR’ at a point A. Let B be the unique point on
side PR such that PA =PB. Then APQA = PQB (SAS); hence
<PQB is a right angle, so that B lies on / (and 7).

You may feel that this argument is plausible enough. Yet how could
you tell if it is correct? You would have to justify each step, first
defining each term carefully. For instance, you would have to define
what was meant by two lines being “‘perpendicular” — otherwise,
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how could you justify the assertion that lines /and m are parallel simply
because they have a common perpendicular? (You would first have to
prove that as a separate theorem, if you could.) You would have to
justify the side-angle-side (SAS) criterion of congruence in the last
statement. You would have to define the “‘interior” of an angle, and
prove that a line through the interior of an angle must intersect one of
the sides. In proving all of these things, you would have to be sure to
use only the first four postulates and not any statement equivalent to
the fifth; otherwise the argument would be circular.

Thus there is a lot of work that must be done before we can detect
the flaw. In the next few chapters we will do this preparatory work so
that we can confidently decide whether or not Legendre’s proposed
proof is valid. (Legendre’s argument contains several statements that
cannot be proved from the first four postulates.) As a result of this
work we will be better able to understand the foundations of Euclid-
ean geometry. We will discover that a large part of this geometry is
independent of the theory of parallels and is equally valid in hyperbo-
lic geometry.

THE DANGER IN DIAGRAMS

Diagrams have always been helpful in understanding geometry—
they are included in Euclid’s E/ements and they are included in this
book. But there is a danger that a diagram may suggest a fallacious
argument. A diagram may be slightly inaccurate or it may represent
only a special case. If we are to recognize the flaws in arguments such
as Legendre’s, we must not be misled by diagrams that /ooé plausible.

What follows is a well-known and rather involved argument that
pretends to prove that all triangles are isosceles. Place yourself in the
context of what you know from high school geometry. (After this
chapter you will have to put that knowledge on hold.) Find the flaw in
the argument.

Given A ABC. Construct the bisector of <A and the perpendicular
bisector of side BC opposite to XA. Consider the various cases (Figure
1.13).
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A
P E
C DE B
Case 3
B
E
D
A F C
Case 2

FIGURE 1.13

Case 1. The bisector of XA and the perpendicular bisector of
segment BC are either parallel or identical. In either case, the bisector
of <A is perpendicular to BC and hence, by definition, is an altitude.
Therefore, the triangle is isosceles. (The conclusion follows from the
Euclidean theorem: if an angle bisector and altitude from the same
vertex of a triangle coincide, the triangle is isosceles.)

Suppose now that the bisector of <A and the perpendicular bisector

of the side opposite are not parallel and do not coincide. Then they
intersect in exactly one point, D, and there are three cases to consider:

Case 2. The point D is inside the triangle.
Case 3. The point D is on the triangle.
Case 4. The point D is outside the triangle.
For each case construct DE perpendicular to AB and DF perpen-

dicular to AC, and for cases 2 and 4 join D to B and D to C. In each
case, the following proof now holds (see Figure 1.13):



The Power of Diagrams | I | 25

DE = DF because all points on an angle bisector are equidistant
from the sides of the angle; DA = DA, and <DEA and <DFA are right
angles; hence, AADE is congruent to A ADF by the hypotenuse-leg
theorem of Euclidean geometry. (We could also have used the SAA
theorem with DA = DA, and the bisected angle and right angles.)
Therefore, we have AE = AF. Now, DB = DC because all points on
the perpendicular bisector of a segment are equidistant from the ends
of the segment. Also, DE = DF, and <DEB and <DFC are right
angles. Hence, ADEB is congruent to ADFC by the hypotenuse-leg
theorem, and hence FC = BE. It follows that AB = AC—in cases 2
and 3 by addition and in case 4 by subtraction. The triangle is there-
fore isosceles.

THE POWER OF DIAGRAMS

Geometry, for human beings (perhaps not for computers), is a visual
subject. Correct diagrams are extremely helpful in understanding
proofs and in discovering new results. One of the best illustrations of
this is Figure 1.14, which reveals immediately the validity of the

a

=

b a+b

X ~
\ /// a
a \ -~ b
FIGURE 1.14
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FIGURE 1.15
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Pythagorean theorem in Euclidean geometry. (Euclid’s proof was
much more complicated.) Figure 1.15 is a simpler diagram suggesting
a proof by dissection.

REVIEW EXERCISE

Which of the following statements are correct?

(1)

The Euclidean parallel postulate states that for every line / and for
every point P not lying on /there exists a unique line 7 through P thatis
parallel to /

An “angle” is defined as the space between two rays that emanate from
a common point.

Most of the results in Euclid’s Elements were discovered by Euclid
himself.

By definition, a line m is ““parallel” to a line /if for any two points P, Q
on m, the perpendicular distance from P to /is the same as the perpen-
dicular distance from Q to /.

It was unnecessary for Euclid to assume the parallel postulate because
the French mathematician Legendre proved it.

A “transversal” to two lines is another line that intersects both of them
in distinct points.

By definition, a *“right angle” is a 90° angle.

“Axioms” or ‘“‘postulates” are statements that are assumed, without
further justification, whereas ‘‘theorems’ or “propositions’ are proved
using the axioms.
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(9) We call Y2 an “irrational number” because it cannot be expressed as a
quotient of two whole numbers.
(10) The ancient Greeks were the first to insist on proofs for mathematical
statements to make sure they were correct.

EXERCISES

In Exercises 1-4 you are asked to define some familiar geometric
terms. The exercises provide a review of these terms as well as prac-
tice in formulating definitions with precision. In making a definition,
you may use the five undefined geometric terms and all other geomet-
ric terms that have been defined in the text so far or in any preceding
exercises.

Making a definition sometimes requires a bit of thought. For exam-
ple, how would you define perpendicularity for two lines /and m? A first
attempt might be to say that “/and = intersect and at their point of
intersection these lines form right angles.” It would be legitimate to
use the terms “intersect” and “‘right angle” because they have been
previously defined. But what is meant by the statement that /nes form
right angles? Surely, we can all draw a picture to show what we mean,
but the problem is to express the idea verbally, using only terms
introduced previously. According to the definition on p. 17,an angle is
formed by two nonopposite 7ays emanating from the same vertex. We
may therefore define /and m as perpendicularif they intersect at a point
A and if there is a ray AB that is part of /and a ray AC that is part of m
such that XBAC is a right angle (Figure 1.16). We denote this by
/L m.

m

FIGURE 1.16 Perpendicular lines.



28

\ 1 { Euclid’s Geometry

1. Define the following terms:

(a)

(b)

Midpoint M of a segment AB.

Perpendicular bisector of a segment AB (you may use the term “mid-
point” since you have just defined it).

Ray BD sisects angle XABC (given that point D is between A and
C).

Points A, B, and C are collinear.

Lines /, m, and » are concurrent (see Figure 1.17).

FIGURE 1.17 Concurrent lines.

2. Define the following terms:

The triangle A ABC formed by three noncollinear points A, B, and
C.

The vertices, sides, and angles of AABC. (The “sides’ are segments,
not lines.)

The sides opposite to and adjacent to a given vertex A of AABC.
Medians of a triangle (see Figure 1.18).

Altitudes of a triangle (see Figure 1.19).

Isosceles triangle, its base, and its base angles.

Equilateral triangle.

Right triangle.

A } f B

FIGURE 1.18 Median.
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A D B
FIGURE 1.19 Altitude.

3. Given four points, A, B, C, and D, no three of which are collinear and
such that any pair of the segments AB, BC, CD, and DA either have no
point in common or have only an endpoint in common. We can then
define the guadrilatera/ TJABCD to consist of the four segments men-
tioned, which are called its szdes, the four points being called its vertrces;
see Figure 1.20. (Note that the order in which the letters are written is
essential. For example, JABCD may not denote a quadrilateral, be-
cause, for example, AB might cross CD. If CJABCD did denote a
quadrilateral, it would not denote the same one as CJACDB. Which
permutations of the four letters A, B, C, and D do denote the same
quadrilateral as DJABCD?) Using this definition, define the following
notions:

a) The angles of JABCD.

b) Adjacent sides of JABCD.

c) Opposite sides of JABCD.

d) The diagonals of JABCD.

)

(
(
(
(
(e) A parallelogram. (Use the word “‘parallel.”)

FIGURE 1.20 Quadrilaterals.

4. Define vertical angles (Figure 1.21). How would you attempt to prove
that vertical angles are congruent to each other? (Just sketch a plan for a
proof —don’t carry it out in detail.)
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FIGURE 1.21 Vertical angles.

5.

6.

Use a common notion (p. 13) to prove the following result: If Pand Q are

any points on a circle with center O and radius OA, then OP = OQ.

(a) Given two points A and B and a third point C between them. (Recall
that “between” is an undefined term.) Can you think of any way to
prove from the postulates that C lies on line AB:

{b) Assuming that you succeeded in proving C lies on Kﬁ, can you
prove from the definition of “ray” and the postulates that AB =
AC?

If § and T are any sets, their union (S U T) and intersection (SN T') are

defined as follows:

(i) Something belongs to SU T if and only if it belongs either to §
or to T (or to both of them).

(it} Something belongs to § N 7 if and only if it belongs both to §
and to 7.

Given two points A and B, consider the two rays AB and BA. Draw

diagrams to show that AB U BA = AB and AB N BA = AB. What addi-

tional axioms about the undefined term “‘between’ must we assume in
order to be able to prove these equalities?

To further illustrate the need for careful definition, consider the follow-

ing possible definitions of rectangle:

(i) A quadrilateral with four right angles.

(i) A quadrilateral with all angles congruent to one another.

(iii) A parallelogram with at least one right angle.

In this book we will take (1) as our definition. Your experience with Euclid-

ean geometry may lead you to believe that these three definitions are

equivalent; sketch informally how you might prove that, and notice
carefully which theorems you are tacitly assuming. In hyperbolic geom-
etry these definitions give rise to three different sets of quadrilaterals

(see Chapter 6). Given the definition of “‘rectangle,” use it to define

*“*square.”

Can you think of any way to prove from the postulates that for every line /

(a) There exists a point lying on /?

(b) There exists a point not lying on /?
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10.

1t.

12.

13.

14.

15.

Can you think of any way to prove from the postulates that the plane is
nonempty, i.c., that points and lines exist? (Discuss with your instructor
what it means to say that mathematical objects, such as points and lines,

“exist.”’)

Do you think that the Euclidean parallel postulate is “obvious’? Write a
brief essay explaining your answer.

What is the flaw in the “‘proof’ that all triangles are isosceles? (All the

theorems from Euclidean geometry used in the argument are correct.)

If the number 7 is defined as the ratio of the circumference of any circle
to its diameter, what theorem must first be proved to legitimize this
definition? (For example, if | “define” a new number ¢ to be the ratio of
the area of any circle to its diameter, that would not be legitimate. The

required theorem is proved in Section 21.2 of Moise, 1990.)

Do you think the axiomatic method can be applied to subjects other than

mathematics? Is the U.S. Constitution (including all its amendments)

the list of axioms from which the federal courts logically deduce all rules
of law? Do you think the “‘truths” asserted in the Declaration of Inde-

pendence are “‘self-evident’’?

Write a commentary on the application of the axiomatic method finished

in 1675 by Benedict de Spinoza, entitled: Ethics Demonstrated in Geo-
metrical Order and Divided into Five Parts Whkich Treat (1) of God: (2) of
the Nature and Origin of the Mind; (3) of the Nature and Origin of the
Emotions; (4) of Human Bondage, or of the Strength of the Emotions; (5) of
the Power of the Intellect, or of Human Liberty. (Devote the main body of
your review to Parts 4 and 3.)

MAJOR EXERCISES

1.

In this exercise we will review several basic Euclidean constructions with

a straightedge and compass. Such constructions fascinated mathemati-

cians from ancient Greece until the nineteenth century, when all classical

construction problems were finally solved.

(a) Given a segment AB. Construct the perpendicular bisector of AB.
(Hint: Make AB a diagonal of a rhombus, as in Figure 1.22.)

(b) Given a line /and a point P lying on / Construct the line through P
perpendicular to /. (Hint: Make P the midpoint of a segment of /)

{c) Givenaline /and a point P #otlying on /. Construct the line through P
perpendicular to /. (Hint: Construct isosceles triangle A ABP with
base AB on /and use (a).)
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FIGURE 1.22

(d) Given a line /and a point P not lying on /. Construct a line through P
parallel to /. (Hint: use (b) and (c).)

(e) Construct the bisecting ray of an angle. (Hint: Use the Euclidean
theorem that the perpendicular bisector of the base on an isosceles
triangle is also the angle bisector of the angle opposite the base.)

(f) Given AABC and segment DE = AB. Construct a point F on agiven
side of line DE such that ADEF = AABC.

(g) Given angle <ABC and ray DE. Construct F on a given side of line
DE such that ¥ABC = <FDE.

2. Euclid assumed the compass to be collapsible. That is, given two points P
and Q, the compass can draw a circle with center P passing through Q
(Postulate I1I); however, the spike cannot be moved to another center O
to draw a circle of the same radius. Once the spike is moved, the compass
collapses. Check through your constructions in Exercise 1 to see if they
are possible with a collapsible compass. (For purposes of this exercise,
being “given” a line means being given two or more points on it.)

(a) Given three points P, Q, and R. Construct with a straightedge and
collapsible compass a rectangle (IPQST with PQ as a side and such
that PT = PR (see Figure 1.23).

FIGURE 1.23

(b} Given asegment PQ and aray AB. Construct the point C on AB such
that PQ = AC. (Hint: Using (a), construct rectangle OPAST with
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PT = PQ, and then draw the circle centered at A and passing
through S.)
Exercise (b) shows that you can transfer segments with a collapsible
compass and a straightedge, so you can carry out all constructions as if
your compass did not collapse.

3. The straightedge you used in the previous exercises was supposed to be
unruled (if it did have marks on it, you weren’t supposed to use them).
Now, however, let us mark two points on the straightedge so as to mark
off a certain distance 4. Archimedes showed how we can then trisect an
arbitrary angle:

For any angle, draw a circle y of radius & centered at the vertex O of the
angle. This circle cuts the sides of the angle at points A and B. Place the
marked straightedge so that one mark gives a point Con line OA such that
O is between C and A, the other mark gives a point D on circle 9, and the
straightedge must simultaneously rest on the point B, so that B, C, and D
are collinear (Figure 1.24). Prove that XCOD so constructed is one-third
of €<AOB. (Hint: Use Euclidean theorems on exterior angles and iso-
sceles triangles.)

D
d
B
A;—jdf—/o C

FIGURE 1.24

4, The number p = (1 + V/5)/2 was called the go/den ratio by the Greeks,
and a rectangle whose sides are in this ratio is called a go/den rectangle.
Prove that a golden rectangle can be constructed with straightedge and

compass as follows:
{(a) Construct a square JABCD.

8 For applications of the golden ratio to Fibonacci numbers and phyllotaxis, see Coxeter
(1969), Chapter 11.
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(b) Construct midpoint M of AB.
(¢} Construct point E such that B is between A and E and MC = ME
(Figure 1.25).

FIGURE 1.25 D C F

(d) Construct the foot F of the perpendicular from E to DC.

(e) Then OAEFD is a golden rectangle (use the Pythagorean theorem
for AMBC).

(f) Moreover, OBEFC is another golden rectangle (first show that

lip=p—1).

The next two exercises require a knowledge of trigonometry.

5.

The Egyptians thought that if a quadrilateral had sides of lengths 4, 4, ¢,
and 4, then its area § was given by the formula (@ + ¢) (6 + &) /4. Prove
that actually

4SS (a+o) (b + d)

with equality holding only for rectangles. (Hint: Twice the area of a
triangle is 24 sin 8, where @ is the angle between the sides of lengths 4, 4
and sin @ = 1, with equality holding only if 8 is a right angle.)

Prove analogously that if a triangle has sides of lengths 4, 4, ¢, then its area
§ satisfies the inequality

4SV3s= A+ 5+ 2

with equality holding only for equilateral triangles. (Hint: If G is the angle
between sides # and ¢, chosen so that it is at most 60°, then use the
formulas

28§ =tbcsin 0
2bc cos 8= 8%+ ¢* — a* (law of cosines)
cos (60° — @) = (cos 6 + V3 sin 6)/2

Let AABC be such that AB is not congruent to AC. Let D be the point of
intersection of the bisector of <A and the perpendicular bisector of side
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BC. LetE, F, and G be the feet of the perpendiculars dropped from D to
, AC, BC, respectively. Prove that:

a) D lies outside the triangle on the circle through ABC.

b) One of E or F lies inside the triangle and the other outside.

¢) E,F, and G are collinear.

Use anything you know, including coordinates if necessary.)

PROJECTS

1. Write a paper explaining in detail why it is impossible to trisect an
arbitrary angle or square a circle using only a compass and unmarked
straightedge; see Jones, Morris, and Pearson (1991); Eves (1963-
1965); Kutuzov (1960); or Moise (1990). Explain how arbitrary angles
can be trisected if in addition we are allowed to draw a parabola or a
hyperbola or a conchoid or a limagon (see Peressini and Sherbert, 1971).

2. Here are two other famous results in the theory of constructions:

(a) The Danish mathematician G. Mohr and the Italian L. Mascheroni
discovered independently that all Euclidean constructions of points
can be made with a compass alone. A line, of course, cannot be drawn
with a compass, but it can be determined with a compass by con-
structing two points lying on it. In this sense, Mohr and Mascheroni
showed that the straightedge is unnecessary.

{b) On the other hand, the German J. Steiner and the Frenchman J. V.
Poncelet showed that all Euclidean constructions can be carried out
with a straightedge alone if we are first given a single circle and its
center.

Report on these remarkable discoveries (see Eves, 1963-1965, and

Kutuzov, 1960).

3. Given any AABC. Draw the two rays that trisect cach of its angles, and let
P, Q, and R be the three points of intersection of adjacent trisectors. Prove
Morley’s theorem? that APQR is an equilateral triangle (see Figure 1.26
and Coxeter, 1969).

4. An n-sided polygon is called regular if all its sides (respectively, angles)
are congruent to one another. Construct a regular pentagon and a regular
hexagon with straightedge and compass. The regular septagon cannot be
so constructed; in fact, Gauss proved the remarkable theorem that the
regular z-gon is constructible if and only if all odd prime factors of #» occur

? For a converse and generalization of Morley’s theorem, see Kleven (1978).
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FIGURE 1.26 Morley’s theorem.

to the first power and have the form 22" + 1 (e.g., 3, 5,17, 257, 65,537).
Report on this result, using Klein (1956). Primes of that form are called
Fermat primes. The five listed are the only ones known at this time. Gauss
did not actually construct the regular 257-gon or 65,537-gon; he only
showed that the minimal polynomial equation satisfied by cos (27/7) for
such 7 could be solved in the surd field (see Moise, 1990). Other devoted
(obsessive?) mathematicians carried out the constructions. The con-
structor for » = 65,537 labored for 10 years and was rewarded with a
Ph.D. degree; what is the reward for checking his work?

5. Write a short biography of Archimedes (Bell, 1961, is one good refer-
ence). Archimedes discovered some of the ideas of integral calculus 14
centuries before Newton and Leibniz.
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