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A principle of formal construction
and computation of spatial event information

Simon Scheider, Martin Kiesow, Anusuriya Devaraju, Krzysztof Janowicz, Henry Michels,
and Werner Kuhn

Abstract—Observations produced by environmental sensors and humans signify naturally occurring events. While there is
technology available for inferring events from sensor streams, knowledge about event inference rules and event construction
principles is often hidden in application logic or needs to be informally specified by domain experts. Semantic formalisms support
description of spatial event inference procedures and provide a way to generalize them across implementation frameworks.
Furthermore, there is a lack of algorithms which are flexible enough to capture both spatial and in-situ event inference, where
spatial events extend beyond a single in-situ sensor. In this paper, we demonstrate how spatial events can be formally specified
as bounded wholes connected by a process simulator. This formal blue print can be used to describe different event inference
methods. Unlike simple event rules, the approach accounts for recursive conditions of spatial and temporal identity of events,
e.g., lag times, and allows inference of event completeness. We propose corresponding event inference algorithms that can
be used to compute process graphs and to generate and publish events as RDF. We evaluate our approach using an officially
published blizzard data set.
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1 MOTIVATION

T EMPORALLY indexed data is fed into the Web by a
growing number of technical and human sensors

[1], [2]. Due to the size and distributed nature of the
Web [3], such data is hard to explore and exploit
for analysis. A key challenge is to infer higher-level
knowledge about events from sensor observations, for
data-intensive science [3] and for organizing knowl-
edge on the Web. Information about events serves
to detect and understand short-term as well as long-
term environmental impacts [4]. However, in an open
technical environment like the Web, meta-data about
event information is a prerequisite to its further use
[3].

Recent research efforts have been devoted to de-
veloping processing standards and technologies for
complex event inference from sensor streams [5], [6].
However, event inference requires not only efficient
computing methods, but also knowledge about event
inference rules and event construction principles. The
latter is often assumed to be supplied informally by
domain experts [7]. The wealth of event literature
suggests that event models can range from simple rule
patterns to statistical procedures [8], [9]. Furthermore,
while mainstream work on events has mainly focused
on stationary time series [8], only few approaches
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have dealt so far with identifying complex spatial
events [10], [11], [12]. Unfortunately, there is no general
formal blue print that would allow a knowledge engi-
neer to capture and specify the knowledge contained
in these different approaches in order to share and
regenerate diverse inference models.

In this paper, we argue that the procedure of
(spatial) event abstraction needs to be better under-
stood and formally described. This allows to capture
the various ways of abstracting events from obser-
vations in terms of event identity conditions, and to
design corresponding event identification algorithms.
As we will show subsequently, existing approaches
either leave the issue of event identity unsettled, or
implicitly make rather restrictive assumptions about
event identity. Our approach allows a generalization
of event inference procedures, which are momentarily
bound to the expressivity of particular event inference
languages, such as Esper [6].

Consider, for example1, the task of inferring
weather events, such as a blizzard, from surface and
weather observations2, as depicted in Table 1. Weather
agencies provide official (but informal) definitions of
many meteorological events, e.g., wind storm, flash
freeze, hurricane, snow squall, and tropical storm3.

Blizzards may be defined [14] in terms of an event
ontology. However, event ontology patterns such as
[15], [16] remain silent about how events should be
identified in terms of observations.

1. Example is taken from [13].
2. http://climate.weatheroffice.gc.ca/climateData/
3. http://climate.weather.gc.ca/glossary e.html
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TABLE 1
Sample observation records from Winnipeg weather

station.
time (h) 7 8 9 10 11 12 13 14
windspeed
(km/h)

38 40 45 43 35 38 40 35

visibility
(km)

1 0.3 0.2 0.2 0.5 0.5 0.2 0.5

condition
(s=Snow;
bs=Blowing
snow;
c=cloudy)

s bs bs bs bs bs bs c

To address event identification, complex event pro-
cessing was established as a research field [8]. Prove-
nance information is provided by a sensor, which
may be hooked into the Sensor Web and described
by semantic sensor specifications [1], [17]. With these
specifications, one can develop sensor-specific inference
rules [7] which capture part of the informal definitions
provided by weather agencies. For example, blizzard
detection requires that there is an anemometer mea-
suring windspeed of at least 40 km/h and a number
of further conditions to be met, including a visibility
threshold and the presence of blowing snow. Hence,
one could use rules of the following kind (over time
series moments t) in order to infer events,

(∃e.Blizzard(e))← windspeed(t) ≥ 40km/h∧
visibility(t) ≤ 1km ∧ BlowingSnow(t)...

, either in the form of deductions (from right to
left), as in [7], or as abductions (from left to right), as
in [18].

However, such sensor rules still fall short of pro-
viding sufficient identity conditions of a spatial event:

1) How can we know that two single observations
generated by a sensor, such as conditions at 8:00
and conditions at 13:00 in Table 1, which both
satisfy a rule pattern such as the one above,
refer to the same blizzard event and not to
two consecutive ones? Note that in Table 1, the
conditions specified by the rule are not satisfied
between 11:00 to 12:00, however, meteorologists
would nevertheless consider both intervals as
parts of the same event [14]. This is the problem
of temporal identity of an event, and it cannot be
solved by a sensor rule of the kind above4.

2) How can we identify a single event across dif-
ferent sensing locations? A blizzard is not point-
like, but an extended spatial phenomenon, and,
thus, a geographic event [12].

3) How can we know that an event starts or ends?
Does the blizzard that seems to start at 8:00
really end at 13:00? This is the question how
temporal event boundaries can be formalized.

4. That is, by Horn rules without recursion.

As it turns out, in meteorological practice [14], [11],
all these questions are given practical answers by the
specific way how event information is constructed from
observations.

In this paper, our goal is to generalize this idea, i.e.,
to devise a formalism that allows to specify spatio-
temporal identity conditions for events and to reason
with them, as well as a corresponding abstraction
algorithm for generating spatial events. The contribu-
tion of the paper is threefold:

1) A formal specification of event identity conditions
and event characteristics (e.g. boundary condi-
tions) (Sections 4, 5 and 6).

2) A suggestion of a corresponding layered archi-
tecture (compare Section 3) which captures these
conditions.

3) A suggestion of corresponding computational
algorithms for event inference, as well as a
prototypical implementation and an evaluation
(Section 7).

Our language is first-order predicate logic (FOL)
with a standard interpretation into acts of focusing
attention and predicating phenomena. We show how
formal event properties follow by construction in
Section 5.3. We reason with the formalism on blizzard
events in Section 6. In the next section, we discuss
existing approaches with respect to event identity
conditions.

2 EVENT INFERENCE APPROACHES

There is a wealth of literature and technology avail-
able on event inference. Recent research efforts in
computer science have focused on developing pro-
cessing standards and technology for complex event
inference from sensor streams [5], [6], [19]. These
approaches regard events as information entities trig-
gered by rules on sensor streams, where so called
“event patterns”, i.e., conjunctive queries, are exe-
cuted over a temporal window of a sensor stream,
such that every pattern match triggers the creation of
an event instance. Particular challenges addressed by
these approaches are the creation of time-based data
windows from streams, and the efficiency of pattern
matching and event joining5. General event identity
critera, however, are not covered by this technology.
For example, spatial event inference procedures, as
proposed by [20], [21], [11], [9], draw on neighbor-
hood sensitive identification methods ranging from
image processing to hierarchical clustering.

Event inference is not only a computational, but
also a conceptual challenge. During the last few
decades, a number of authors have provided formal
ontological accounts of events [22]. On a fundamental
level, one can distinguish among occurrence types such
as events and processes [22], mirroring the dyad of

5. Compare, e.g., the “Esper” query language [6].
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things and stuff [23], and reflecting formal properties
such as homogeneity, boundedness, and cumulativity.
However, there are disagreements about ontologi-
cal commitments to temporal entities. In philosophy,
commitments range from the denial of temporal enti-
ties (“three-dimensionalism”) to the claim that every-
thing that exists is a process [24]. In practice, general-
purpose event ontologies do not seem to pay off [5].
Simple ontology patterns, such as [15], [16], can provide
useful building blocks for specific purposes, but fail
to provide any event identity criteria or construction
principles.

Information about events is usually considered on
a higher level of abstraction than observations, which
suggests that it should be treated as a formal abstraction
of the latter. In cognitive science, there is evidence that
humans abstract complex events based on applying
event schemas to discrete events, which are in turn
a result of spontaneous segmentation of a continuous
flow of perception [25]. From a logical viewpoint, this
poses the question what makes an event an event, and
whether there are general identification procedures for
events which distinguish them from other categories.
The latter would be urgently needed for automatic
event inference [11], [5].

There are ontological attempts to come to grips with
human observers and technical sensors [17]. Related
to this work, we have proposed a process-centric view
on sensors in [26]. There are also attempts to infer
events as abstractions from sensor observations. The
approach in [7] bases events on threshold patterns
over particular sensor readings. [27] propose a formal
method of sensor abstraction based on abductive rea-
soning. [28] suggest to detect geographical processes
based on formalizing homogeneous spatial change,
such as deforestation. All these authors do not address
complex event identity conditions such as discussed
in Section 1.

We have proposed an operational constructive ap-
proach towards the semantics of spatial information
in [29]. The approach suggests operations and pro-
cedures as a resource of data semantics instead of
ontological claims. Events are considered results of
a formal construction from observation procedures,
as envisioned in [30]. This allows to precisely specify
their identity criteria.

3 LOGICAL EVENT CONSTRUCTION

The challenge of a constructive approach towards
information is where to start with, i.e., where to
ground, the construction of information entities. We
have argued in [29] that a useful starting level are re-
producible observation procedures, i.e., standardized opera-
tional schemes for acting in an environment which can
be shared by observers and allow them to establish

semantic reference6. We will discuss a number of these
operations in the following. At the same time, we will
introduce corresponding formal primitives in FOL. In
the remainder, all free variables (denoted by lower-
case letters) in formulae are universally quantified.
Sometimes, we explicitly use predicate wildcards in
axiom schemata (in square brackets) indicating how
axioms with a more specific purpose may be gener-
ated.

Fig. 1. Logical event abstraction schema underlying
our approach. Circles denote procedures, and boxes
denote resulting logic as subset of a FOL theory.

The approach taken is to introduce several logical
abstraction layers in terms of the procedures that gen-
erate them, as depicted in Figure 1. The lowest level
is the level of observations, which denotes results
of human or sensor focusing and predication. The
next layer contains process connections, which denote
results of process simulators. The third layer contains
events and their boundaries, which are entities logi-
cally abstracted from connectedness of processes.

4 PROCEDURES FOR EXPERIENCING
EVENTS AND PROCESSES

Whenever one experiences a phenomenon in one’s
environment, one may utter a here-now (deictic) state-
ment, such as “this is a tree” or “here and there
continues the same precipitation event”. Following
[32], we call such basic kinds of acts predications. Pred-
ications can be understood by other observers because
they have learned to perform the same predications,
and because they are able to follow the attention of
a speaker. As we will argue subsequently, we can
understand data from technical sensors in an anal-
ogous way, based on regarding technical sensing as
an extension of human attention.

4.1 Focusing attention and predicating the flow of
time
What is the domain of discourse of our event reference
theory? What are the entities over which we can predi-
cate temporal phenomena? On the most fundamental

6. In [29], we argue that this is a basis for (semantic) reference
systems [31], i.e., formal theories that provide reference to observ-
able phenomena such as location, time, objects and qualities.
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Fig. 2. Foci of attention are produced by shifting
attention. They are granules in space as well as time.
At the same time, they are lowest level information
items on which phenomena can be predicated.

level, our domain of discourse contains a finite set
of memorized acts of focusing human attention on
some signal in the perceived environment [29], [33].
From the perspective of an observer, human attention
is granular7.

These granules are called foci of attention and de-
noted by the unary predicate F. Since foci are sharable
among observers by joining attention, they can be
conceived as lowest level information items8. In human
attention, every “now” is also a “here” or “there”,
i.e., space and time are inseparably interwoven. Therefore,
foci can be used as a basis for referring to mea-
surable space as well as time. As [36] argues, foci
of attention provide a non-circular account of time,
because experiences of succession and duration are not
attributed to some unobservable physical flow of time,
but regarded as results of attentional activity.

Experiencing time in its simplest form means to per-
ceive the temporal flow or order ≤T of foci of attention9.
Note that we do not assume that attentional moments
are indivisible for an observer. There may be many
foci at a time, and so temporal equivalence is different
from true identity (the former is denoted by =T , the
latter by =) among foci10.

Axiom 1: [Temporal-order-with-identity]
(F(x) ∧ F(y)) ↔ (x ≤T y ∨ y ≤T x) totality
x ≤T y ∧ y ≤T x → x =T y antisymmetry
x ≤T y ∧ y ≤T z → x ≤T z transitivity
We can define the corresponding strict order, and an
immediate successor relation ≺T from the strict order-
ing. Since the domain of foci denoted by F is assumed
to be finite, every focus with a successor/predecessor

7. Arguments for discreteness of human attention can be found
in [34].

8. Compare [29], Chapter 3. Arguments for basing language
semantics on human attention can be found in [35]. Note that
we consider foci and predications as information items or “speech
acts”, not as elements of a theory of human cognition.

9. We leave open whether this order is based on a pulse, as
argued in [33], or on comparing durations, as argued in [36].

10. Cognitive scientists assume that humans can maintain
around 4 such foci simultaneously [37].

has an immediate successor/predecessor.
Definition 1: [Strict-order]

x <T y ↔ x ≤T y ∧ ¬y ≤T x
Definition 2: [Immediate-successor]

x ≺T y ↔ x <T y ∧ ¬(∃z.x <T z ∧ z <T y)
The role of technical procedures is to precisely

locate these foci in certain reference systems.

4.2 Predicating exact time and exact space using
reference systems

Moments of attention do not provide reliable access
to exact time, since they keep appearing and disap-
pearing in memory. They only supply a subjective
reference with respect to now, which is observer-
relative. The absolute time underlying temporal refer-
ence systems, e.g., calendars and standard time, are
results of calibrating attention by periodic artificial or
natural phenomena. For example, a clock can be used
to predicate temporal distances between foci of atten-
tion, based on paying attention to the number of ticks
or hourly strikes in between the members of each pair.

Similarly, using spatial reference systems, such as
coordinate systems, and corresponding sensors, such
as GPS, it is possible to locate one’s attentional focus
in space. The consequence of all this is that foci as
such, not only spatial objects or perceived phenom-
ena, have mappings into regions of spatial and tem-
poral reference systems. That is, we can assume total
functions (where when) from foci into such regions:

Axiom 2: [Where-and-when-focusing]
where(f ) = s → F(f ) ∧ Space(s)
F(f ) → ∃s.where(f ) = s
when(f ) = t → F(f ) ∧ Time(t)
F(f ) → ∃t.when(f ) = t
Furthermore, the underlying reference systems come
with algebraic operations (+,−,≤,≥) on pairs of
(temporal) regions, as well as temporal (denoted by
the function dur) and spatial (denoted by the function
dist) distance measures, which we directly use on
pairs of foci.

4.3 Technical sensing and technical foci

Technical sensors extend human attention by synthe-
sizing technical foci and adding new kinds of predica-
tions. For example, a tipping bucket rain gauge measures
rainfall intensity based on the number of times it fills
up with rain and tips in an interval measured by a
clock, see Figure 3 (a). It allows humans to predicate
precipitation intensity on a technical focus [38]. The
instrument generates its own set of granular foci, each
of them having the spatial extent of the instrumental
funnel opening (spatial support) and the temporal res-
olution of the integration interval (temporal support).
Another example is remote sensing, where a focus
corresponds to the instantaneous field of view, see
Figure 3 (b).
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(a) (b)

Fig. 3. A focus is an abstraction over foci of human
attention as well as spatio-temporal sensor ranges. In
the case of a rain gauge (a), foci are defined by the
funnel opening and the time interval of water volume
measurement. In remote sensing (b), a focus corre-
sponds to the “instantaneous field of view”.

The following are predications of meteorological
observations for blizzard detection with well known
measurement scales for values expressed by the vari-
able y [14]:

Axiom 3: [Met.-ground-observations]
BlowingSnow(f ) ∨ windspeed(f ) = y ∨ prvisdist(f ) = y∨
windchill(f ) = y → F(f )
BlowingSnow stands for the human observed presence
of blowing (wind initiated movement) of snow at
some spot in focus. windspeed denotes anemometer
measurements predicated on the “anemometer focus”.
The technical focus of an anemometer, the so called
“support”, is the space the rotating propeller takes,
which is in the order of a square foot and must
be located at 10 meters (33 feet) above ground. The
temporal resolution is determined by the interval
during which propeller rotations are counted. The
function prvisdist denotes a standardized procedure to
determine the prevailing visibility distance around a
point of view of a human observer. This point of view
is the one taken into focus. Wind chill is a derived
measure of how cold the weather feels to the average
person, based on temperature and velocity11.

4.4 Predicating processes

Events can be referred to by different observers based
on inter-subjectively available predications. But what
kinds of predications are needed for event construc-
tion? In particular, which kinds of predications can
account for identity and functional aspects of events?
Functional aspects include the participatory roles of
bodies in them, in particular causal relations among
agent and object [39]. Individuation criteria decide

11. Compare http://climate.weather.gc.ca/glossary e.html.

about whether the same event occurs at two oppor-
tunities, and thus account for identity of an event12.

We follow [22] and [23] in conceiving events as
bounded bits of processes. In particular, we hold that
the construction of an event as an information item is
based on the predication of a process that is “going on”
at some focus of attention, similar to [24]. For example,
the measure of time intervals with a sand clock is
based on being able to predicate “sand keeps running”.
While the human ability to perform such process
predications seems uncontroversial, the mechanism
behind it seems still unclear.

[40] and [41] have argued that the human percep-
tual competences (and more generally, human intelli-
gence as such) is a result of a situated simulation. We
similarly hold that our ability to recognise processes
is dependent on our ability to make a simulation
of them. Simulations enable an observer to connect
discrete foci of attention at which the sand keeps run-
ning. Furthermore, a simulation allows to distinguish
among relevant and irrevelant participants [42].

Using predicates of the following form, we express
that at two foci x and y, an observer states that the
“same process is going on”. PType is a wildcard standing
for the underlying process simulator that enables this
predication. Since the predication expresses a kind
of an equivalence, it is assumed to be transitive and
symmetric:

Axiom Schema 1: [Process-connectedness]
PC[PType](x, y) → F(x) ∧ F(y)
PC[PType](x, y) → (z)PC[PType](y, x) symmetry
PC[PType](x, y) ∧ (z)PC[PType](y, w) → (z)PC[PType](x, w)
transitivity

4.5 Spatio-temporal process simulators
From the viewpoint of information technology, it is
desirable to mimick this human competence and thus
to detect processes automatically. The human cogni-
tive mechanisms which underlie process predications
may not be known or difficult to model. However,
there are many existing technical process simulations
which are useful because they rely on rather simple
approximations of this human competence. By for-
mally distinguishing different kinds of process sim-
ulators, we make our theory a flexible framework for
expressing and comparing different kinds of technical
event detection approaches.

Technically, we will derive a relation PC[PType] as the
symmetric transitive closure of a simulated preliminary
relation PC∗

[PType]. Since the semantics of symmetric
transitive closures cannot be expressed in FOL, we
leave its definition out of the formalism, however,
its computation is straightforward. We will discuss
different simulators in the following and illustrate
them by Figure 4.

12. Knowing the static configuration of the world in a sequence
of snapshots is not enough to decide about event identity (compare
[22]).
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4.5.1 Process simulators based on temporal homo-
geneity
For example, some processes can be individuated by
a criterion of homogeneity. This means some unary
predication can be performed continuously, which ac-
counts for identity of a process (while other properties
may change). Homogeneity may be based, e.g., on
a threshold pattern. If the water level at some river
gauge continues to be above the flood stage threshold,
then one can predicate that a “flooding is going on”
[7]. Similarly, landslide simulation can be based on
rainfall intensity thresholds [7]. Homogeneity may
also be defined in terms of a certain type of oriented
change, such as decrease, increase and expansion [28].

For example, the homogeneity condition of a bliz-
zard process, i.e., the “going on” of a snowstorm, is
defined by Environment Canada13 as whenever wind
speed is at least 40 km/h, windchill is at least 1600
W/m2, and visibility is 1 km or less due to blowing
snow:

Definition 3: [Blizzard-homogeneity] HBlizzard(f )↔
windspeed(f ) ≥ 40km/h∧ prvisdist(f ) ≤ 1km∧
BlowingSnow(f )∧windchill(f ) ≥ 1600W/m2

A simple in-situ simulator can be implemented as
a rule which checks whether the condition applies
continuously for temporally neighboring and spatially co-
inciding foci, and then infers that the process is going
on (compare Figure 4 (a)):

Definition 4: [Simple-in-situ-Blizzard-process-
simulator] PC∗Blizzard−insitu−simp(x, y)↔
x ≺T y∧HBlizzard(x)∧HBlizzard(y)∧where(x) = where(y)

The fact that foci coincide spatially, i.e., that the
process is detected “in-situ”, makes it easy to com-
pute, since neighbors reduce to co-located temporal
followers.

4.5.2 Process simulators based on spatio-temporal
neighbourhood
However, many kinds of processes require a more so-
phisticated approach. For example, Lawson [14] adds
what we call neighbourhood conditions to the simulation
in order to detect Blizzard processes.

He proposes [14] to use a lull period of 4 hours, a
period of ceasing Blizzard homogeneity conditions
of less than four hours, during which the blizzard
homogeneity condition may not be met, and which
still allows to sustain the assumption that the Blizzard
process is going on (compare Figure 4 (b)). The idea
of this lull period is to bridge temporal variances
of environmental conditions which are not due to a
ceasing Blizzard. Lull periods heavily depend on the
particular domain of application:

Definition 5: [In-situ-process-
simulator-with-temporal-neighborhood]

13. According to the definition valid before 2012, which is used
in [14]. The new definition can be found here: http://www.ec.gc.
ca/meteo-weather/default.asp?lang=En&n=D9553AB5-1#blizzard.

PC∗Blizzard−insitu−temp(x, y)↔ ∃x′y′.x′ ≤T x∧ x ≤T y∧
y ≤T y′ ∧HBlizzard(x′)∧HBlizzard(y′)∧ durh(x′, y′) < 4
∧where(x) = where(y)

Note that the latter definition is much more chal-
lenging in terms of computation than Definition 4. The
problem is that we cannot simply infer from the loss
of homogeneity of immediate followers that a Blizzard
is actually stopping. We need to take into account a
temporal range of homogeneity. During that interval,
immediate neighbors may not satisfy homogeneity
at all but still belong to a Blizzard. In particular,
we cannot infer that a focus which does not satisfy
homogeneity is one where a Blizzard is not going
on. We simply do not know, unless we have checked
whether it lies inside a temporal neighborhood of
homogeneous foci.

The simulators specified above are called “in situ”,
because they restrict the predication to stick to in-situ
observations. However, our approach also allows to
specify simulations of spatially extended processes [12].
Weather processes are good examples for the latter.
In this case, one needs a simulator that connects the
process over different sites, allowing to predicate that
the “same process” goes on at them. Such simulators
are available in practice [11] and may be based, e.g.,
on image recognition techniques such as the helix
model [20].

Here, we propose a simple logical approach which
generalizes the idea of a lag time to space in terms of a
spatio-temporal neighborhood (see Figure 4 (c)). For this
purpose, we introduce a spatio-temporal spheroid,
with x located in its center and y and z lying within
a maximal spatial and temporal distance from x, e.g.,
25 km and 4 hours:

Definition 6: Spheroid(x, y, z)↔
durh(x, y) ≤ durh(x, z) < 4∧ distkm(x, y) ≤ distkm(x, z) < 25

Processes can then be considered to go on through
space and time, i.e., through foci x and y, iff x and y lie
within a spatio-temporal spheroid located at focus x′

and spanned by another focus y′, such that y′ and x′

are homogeneous, and y′ is closer than a maximal distance
from x′:

Definition 7: [Process-simulator-
with-spatio-temporal-neighborhood]
PC∗Blizzard−spatio−temporal(x, y)↔ ∃x′, y′.Spheroid(x′, x, y′)∧
Spheroid(x′, y, y′)∧HBlizzard(x′)∧HBlizzard(y′)

This process simulator moves a homogeneity
spheroid through space-time and connects foci based
on homogeneity neighborhoods. Simulators in Def-
initions 4 and 5 can be considered special cases of
Definition 7, where space is kept constant. Note that
from Definition 7 it directly follows that PC is locally
reflexive, symmetric and transitive.

4.5.3 Process simulators with boundary conditions

In numerical simulation [42], boundary conditions
play an important role in order to account for the
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(a) (b) (c)

Fig. 4. Three principle variants of a process simulator: (a) is a simple in-situ simulator which connects processes
based on homogeneity of temporal successors, (b) is an in-situ simulator based on lag time and (c) is a simulator
based on a spatio-temporal neighborhood spheroid.

unknown. For example, every observation covers only
a limited extent of the environment, an observation
window. Beyond the spatio-temporal border of this
window, it remains unknown whether a process goes
on or not. A neighborhood-based simulator can be
made aware of this border, which allows to make
explicit that process connectedness remains unknown
at the border. More precisely, once the neighborhood
spheroid crosses the border of an observation win-
dow, one strictly cannot decide anymore whether a
process goes on or not at the center of the spheroid
since it covers unknown locations. If we constrain
process simulation to the core of the observation
window, we leave open whether a strip along the
border of the window is connected or not14.

For example, here is a logical schema which restricts
neighborhood-based process simulation (using the
definition of some process simulator [De f iniens][PType]
as introduced above) to only those foci whose tempo-
ral neighborhood (as defined by the lag time) stays
within the temporal borders defined by the start and
end of the current set of observations:

Definition 8: WithinTB(x) ↔
∃y, z.when(y) + 4 ≤ when(x) ≤ when(z) − 4

Definition Schema 1: [Boundary-condition]
WithinTB(x) ∧ WithinTB(y) →(

PC∗
[PType](x, y) ↔ [Definiens][PType](x, y)

)

Note that by this definition, outside of the temporal
interior of the observation window, it can neither be
inferred that a process goes on, nor that it does not
go on. In the next section, we will construct events as
bounded wholes with a beginning and an end, and
this beginning and end can only be inferred if it is
known that a process starts or ceases to go on. If this is
not the case, then, due to FOL’s open world semantics,
we are only able to infer the existence of partial events.

4.5.4 Process simulators based on event schemas
Instead of inferring process connectedness based on
continuity criteria or boundary conditions, one can
also rely on configurations of lower level events which
trigger a higher level event. A simple example is the

14. This is possible because of the open world assumption of FOL.

identification of events such as “buying a hot dog
from a street vendor”, which consists of two subse-
quent transaction events, one for transferring money,
and the other for transferring a good. [9] have recently
proposed a clustering approach which is based on this
idea. In general, all event patterns used in conjunctive
queries, such as in Esper [6], correspond to logical
configurations of low level events. Since it is obvious
that such configurations can be expressed in FOL, we
leave away their formal specifications here.

5 ABSTRACTING EVENTS FROM PROCESS
PREDICATIONS

If an observer has recorded process predications, one
can perform abstraction computations on them. We
regard events simply as specific kinds of abstractions
over foci. F is, therefore, a subdomain of the larger
domain D of our FOL theory, which may also contain
reified entities [43]. Reified entities need to be explicitly
introduced by an existence claim. One way of tying
reifications to foci is to individuate them as classes of
foci15. We will call these extensional reifications.

5.1 Extensional reifications
We introduce reified classes as first-order entities with
an element-of relation ∈ in the domain of discourse
D. Classes are extensional, so their elements give rise
to an identity criterion for classes. The relation ∈
individuates classes:

Definition 9: [Class-definition] Class(y) ↔ ∃x.x ∈ y
Axiom 4: [Extensionality]

Class(x) ∧ Class(y) ∧ (∀z. (z ∈ x ↔ z ∈ y)) → x = y
Axiom 5: [Distinctness-of-classes-and-elements]

Class(x) → ¬ (∃u.x ∈ u)
Axiom 6: [F-as-nonempty-set-of-urelements]

(F(x) ↔ ¬∃z.z ∈ x) ∧ ∃y.F(y)

15. We are aware of the fact that many kinds of information, e.g.,
predictive inferences or information from sensors that transgress
the resolution of human attention, cannot be modelled as classes.
There are also philosophical arguments against set-theoretic ap-
proaches towards cognitive abstraction [44]. But note that our reifi-
cations are synthesized information entities, not cognitive artifacts.
Also, non-extensional reifications can be constructs with a more
indirect relation to observations (see Chapter 4 in [29]).
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Note that since classes are entities different from their
elements due to Axioms 5 and 6, Russell’s paradox
cannot occur. In particular, we only allow for a sin-
gular layer of classes. It will be useful to introduce
some mereological operators for these classes (where
P stands for “part of” and PP for “proper part of”).
Note that we do not consider these as a substitute for
axiomatic mereology.

Definition 10: P(a, b)↔ Class(a)∧ ∀x.x ∈ a→ x ∈ b
PP(a, b)↔ P(a, b)∧ ¬P(b, a)

5.2 Unified wholes
There is a certain kind of class which is useful for
abstracting many information items [29], in particular
events. Unified wholes are based on binary predications,
and they are defined as maximally self-connected classes.
In the following axiom schemas, let R be any binary
predicate corresponding to some predication on the
domain of F.

The following axiom schema describes a predicate
WholeR which applies to those reified classes that form
a single whole w.r.t. R. All elements of such a whole
must be mutually connected by R (this is called unity),
and the class must be maximal in the sense that every
entity which is R-related to all of the whole’s elements
is included:

Definition Schema 2: [Unification] Unity[R](e)↔
Class(e)∧ ∀x, y. (x ∈ e∧ y ∈ e→ [R](x, y))
In our case, since R(x, y) means x and y “belong to
the same thing” and R is symmetric and transitive,
the maximality condition of a whole can be simplified
to16:

Definition Schema 3: [Maximality]
Whole[R](e)↔ Unity[R](e)∧ (∀x, y.([R](x, y)∧ y ∈ e→ x ∈ e))
Wholes are our answer to question 1 and 2 in Section
1, i.e., to the problem of how to specify identity
conditions for events.

5.3 Constructing events and proving facts about
them
We now suggest a formal construction schema of
events with boundaries (question 3 in Section 1).
Many scholars have argued that events are temporal
analogues of objects because they imply boundedness,
while processes are analogues to matter [45], [23].
Since we hold that objects as well as events and pro-
cesses are constructed based on moments of attention,
we need to say how these constructions differ.

The construction of bodies naturally involves
boundaries based on perceiving surfaces. Surfaces are
indexed by a fundamental Gestalt perception mecha-
nism that is built into our visual and tactile system
[37]. However, for event individuation, we do not
seem to have an equivalent mechanism. There is

16. Note that Definition 3 excludes overlapping wholes. A more
general definition is in [29].

no perceivable “temporal surface” we can refer to.
[25] argue that in human perception, discontinuities
in movements may be equivalent to such surfaces.
What distinguishes the construction of events from
that of other bounded entities, such as bodies, is that
the former bases on transitions as temporal boundaries.
These are themselves results of a construction.

A transition is a perceivable qualitative change of
a process. If a process does not go on from some
moment to some immediately preceding moment (at
the same location), then the pair of moments is called
an in-situ beginning17. Similarly, an in-situ ending is
when the process cannot be predicated anymore at
the same location:

Definition Schema 4: [In-situ-beginning-and-ending]
B[PC](x, y)↔ x ≺T y∧where(x) = where(y)∧ ¬[PC](x, y)
∧[PC](y, y)
E[PC](x, y)↔ x ≺T y∧where(x) = where(y)∧ ¬[PC](x, y)
∧[PC](x, x)

An event is temporally bounded by transitions. But
it is also a connected whole, in the sense that every
pair of its moments is connected by a chain of process-
connected moments. We define an event as a process-
connected whole (with respect to a process predication
[PC]) in which every focus is temporally bounded by
in-situ process transitions:

Definition Schema 5: [Event]
Event[PC](x)↔ Whole[PC](x)∧
∀f ∈ x.∃b ∈ x, b′, e ∈ x, e′.B[PC](b′, b)∧ E[PC](e, e′)∧
where(f ) = where(e) = where(b)
Note that events may very well be instantaneous, in
case the whole consists of a single self-connected
moment with transition boundaries. However, by con-
struction and in contrast to simple process wholes,
events always imply boundary moments at which the
process constituting the event ceases to occur. Thus,
they imply change18.

Commonly known ontological properties about
events follow by construction. We proved all of the
following theorems based on the resolution based
theorem prover Prover 919 and the axioms so far.
For example, anti-homeomericity, which means that an
event never contains another event of the same type
[24]:

Theorem 1 (Anti-homeomericity):
Event[PC](x)∧ PP(y, x)→ ¬Event[PC](y)

Proof: By Definition 5, an event is a process-connected whole,
which means it needs to be maximal by Definition 3. Now suppose
there was a proper part x′ of the event x that is also an event. By
Definition 10, this means there exists some focus f that is element

17. Other types of event-related change were proposed, e.g., by
[11] and [28].

18. However, note that since we only take into account temporal
bounds, we allow an event to move into or out of an observation
window.

19. Sources: http://geographicknowledge.de/eventlogic/
eventlogic simple. Prover 9 can be obtained here:
http://www.cs.unm.edu/∼mccune/mace4/. We could also prove
the consistency of the theory, see http://geographicknowledge.
de/eventlogic/eventlogic simple.model.



IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, VOL. ?, NO. ?, ? 9

of x but not of x′. By Definition 5, f needs to be process-connected
to all elements of x. Since x′ is a proper part of x, f must also be
process-connected to all elements of x′, and thus must be element
of x′, which leads to a contradiction.

In a similar way, one can prove that cumulating
events does not form a new event of the same type,
and that events of the same type cannot overlap:

Theorem 2 (Anti-cumulativity):
PP(y, z) ∧ PP(x, z) ∧ Event[PC](y) ∧ Event[PC](x) →
¬Event[PC](z)

Theorem 3 (Non-overlap):
Event[PC](z) ∧ Event[PC](y) ∧ (∃x.x ∈ z ∧ x ∈ y) → z = y

Processes, in contrast, may be reified as unbounded
wholes, similar to mass nouns [24], [46]20. In a similar
way, partial events can be defined as process wholes
which are not events because they lack boundaries.
This can either mean that the underlying process goes
on forever (and thus there does not exist any corre-
sponding event), or that the boundary lies outside the
observation window, and thus remains unknown:

Definition Schema 6: PartialEvent[PC](x) ↔
Whole[PC](x) ∧ ¬Event[PC](x)

6 APPLICATION SCENARIO: INFERRING
BLIZZARD EVENTS

Our theory can be used, e.g., to formally infer in-
situ blizzard events from ground observations, as de-
picted in Table 1. The times at which the homogeneity
condition is satisfied in our sample of Table 1 are∧

i∈{8,9,10,13} HBlizzard(fi). This is provable, as well as the
contrary for all other foci.

Fig. 5. A blizzard as a bounded whole of transitively
closed process simulations.

It can now be inferred that the blizzard “goes on”
from 10 am to 1pm, PCBlizzard−insitu−temp(f10, f13), even
though the homogeneity condition is not met from
11 to 12 am, and that it “ceases” from 1 to 2 pm
¬PCBlizzard−insitu−temp(f13, f14). Regardless of the kind
of simulator, a blizzard can be defined [14] as a
corresponding event that lasts for at least four hours:

Definition 11 (Blizzard):
Blizzard(x) ↔ EventPCBlizzard−insitu−temp (x)∧
∃z ∈ x, y ∈ x.durh(z, y) ≥ 4
It is now possible to infer that an appropriate class of
foci corresponds to a blizzard:

20. However, note that we make a formal distinction between
boundedness and “likepartetness” (homeomericity).

Theorem 4: Blizzard({f8, f9, f10, f11, f12, f13})
All this is automatically provable based on resolution
for very simple domains21.

7 COMPUTATION OF SPATIAL EVENT
WHOLES

For toy domains, event construction can be com-
puted inside of FOL using resolution, as we demon-
strated above. However, resolution is too inefficient
for practical purposes of database computing. Thus,
FOL should be used for specifying and proving what
should be computed, rather than for computing itself.

Following our formal architecture which distin-
guishes processes from events, computing event
wholes has two algorithmic aspects. First, the effi-
ciency of computing a process simulation on a record
of attentional foci. This varies greatly with the kind of
simulator, from simple Definition 5 to complex image
recognition techniques for geographic processes [20]
or numerical simulations [42]. Second, the efficiency
of computing wholes on process connections. Since
events are symmetric transitive process wholes, they
correspond to connected components in an undirected
graph, which can be even solved in linear time
O(|V|+|E|) [47].

7.1 Computation of spatio-temporal process sim-
ulation

The first abstract formal layer of our theory are pro-
cess simulators. We have formally specified a number
of different simulators in Section 4.5, and we will
propose now an algorithm for computing the most
general version of these, which is Definition 7. The
other options discussed are special cases of this gen-
eral definition. Note, however, that we do not claim
that this simulator is general enough to cover all
possible forms of process simulation.

In our pseudocode notation, we make use of the
operators explained in Table 2, whose semantics
should be obvious. For example, we used JTS22 and
Joda Time23 Java libraries to compute spatio-temporal
neighborhoods. The trick behind this algorithm is that
both, the process homogeneity condition (.satis f ies())
as well as the definition of a (spatio-temporal) neigh-
borhood (.neighbourhood) can be treated as a param-
eter, thus allowing for different homogeneity neigh-
borhood conditions.

The procedure is specified in Algorithm 1, and it
was motivated to some extent by the idea of density-
based clustering [48]. Initial keeps a list of yet unvis-
ited foci which is processed until the list is empty in
an outer while loop. In each iteration of this loop, the

21. Compare the theorems in the Prover 9 script http://
geographicknowledge.de/eventlogic/eventlogic simple.

22. www.vividsolutions.com/jts/
23. http://joda-time.sourceforge.net/
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TABLE 2
Pseudocode operations

operations type explanation

[ ] List the empty list
.satis f ies() F→ Bool tests whether some homo-

geneity condition is satisfied
Initial List[F] list of ordered focus elements

F (ordered by timestamp)
.get() List[F]×N

→F
gets the element with the
given index from a list

.get() List[F]× F
→N

gets the index of an element in
a list

.getStart() List[F]→ F gets the earliest element sat-
isfying the homogeneity con-
dition, removes all preceeding
non-satisfying foci from Initial

.remove() List[F]× F
→ List

deletes the given element
from the list

.contains() List[F]× F
→ Bool

returns true, if the given ele-
ment is contained in the list

.neighbourhood List[F]× F
→ List

creates a list of foci F in
a multidimensional spheroid
around some original focus,
ordered by spatio-temporal
distance

Neighbours List[F] keeps a list of neighboring foci
.newEdge() F× F → E creates an edge out of two foci

ProcessGraph List[E] process graph, list of edges
.add() List[E]× E

→ List[E]
adds a new edge to a list

.connectedSets() Graph[F]→
List[Set[F]]

generates the connected com-
ponents of a graph

.getTimeSeries() F → List[F] generates the temporally or-
dered list of foci which are co-
located with a given focus

.WithinTB() F → Bool checks whether a focus is
within a temporal process
simulation window

current focus is initialized to the earliest focus which
satisfies the homogeneity condition.

Starting from there, the algorithm builds up a ho-
mogeneity sphere path by pushing the homogeneity
sphere through the list of foci as far as possible, in
any temporal or spatial direction. First, it removes the
current focus (cur) from Initial and then it retrieves a
neighborhood of foci around cur (not including cur)
ordered by distance. In a for loop, it visits each focus
in this neighborhood in the order of their distance,
starting from the outermost one. If it comes across
the first focus i satisfying homogeneity, then it adds
an edge from cur to i to a process graph, and if i was
not visited yet, then it sets i as newCur and continues
the path. In the next for loop, continuation leads to
fetching all closer neighbors to the process graph,
regardless of their homogeneity, and removes them
from Initial. This implements the (spatio-temporal)
neighborhood conditions in Definition 7. After the
neighborhood was completely visited, the outermost
homogeneous focus (newCur) in this neighborhood
becomes the new cur, i.e., the next step in the sphere
path.

By the conditions in the for loop, the following is
assured: if the spheroid neighborhood either does con-

Algorithm 1 Process Simulation based on Homogene-
ity and Distance Neighborhood
Require: Initial contains all given foci F; cur, newCur ∈ F

1: ProcessGraph← [], Nbs← [], continuePath← true
2: while Initial 6= [] do
3: cur ← Initial.getStart()
4: while continuePath = true ∧ cur.satis f ies() do

{Continues sphere path on current focus}
5: continuePath← f alse
6: Initial.remove(cur) {removes visited foci}
7: newCur ← null
8: Nbs ← Initial.neighbourhood(cur) {Spatio-

temporal neighbours (reflexive) ordered by
distance}

9: for all (i = Nbs.size()− 1; i ≥ 0; i−−) do
10: if continuePath = f alse then {if no satisfying

focus has been found yet}
11: if Nbs.get(i).satis f ies() then {Neighbour satis-

fies condition}
12: ProcessGraph.add(newEdge(cur, Nbs.get(i))
13: if Initial.contains(Nbs.get(i)) then

{Neighbour not yet visited}
14: newCur ← Nbs.get(i) {Sets new current

focus}
15: continuePath← true
16: else {Fetches all neighbours within distance to

new focus}
17: ProcessGraph.add(newEdge(cur, Nbs.get(i)))
18: Initial.remove(Nbs.get(i)) {Removes foci con-

tained in the graph}
19: cur ← newCur
20: continuePath← true

tain a homogeneous neighbor, or if all homogeneous
neighbors were already visited (in case the path runs
into foci which were already covered by some path),
then the path will not be continued, and cur is set to
a new starting focus in Initial in the outer while loop.
This exhausts foci until none are left.

As in density-based clustering, the algorithm does
not make any assumptions about the geometric form
or the connectivity of the resulting process graph.
This means that the Gestalt of the resulting events is
not in any way constrained or predetermined by the
algorithm.

The complexity of this algorithm is polynomial, just
as density-based clustering. It depends on the index
structure used to compute neighborhoods. If one can
execute such a neighborhood query in O(log n), then
the overall runtime complexity is O(n · log n). Without
an index, complexity becomes O(n2).

7.2 Computation of events

The output of Algorithm 1 is a process graph. Algo-
rithm 2 cuts out event wholes based on this process
graph. According to Definition 5, this depends on the
connectivity of the graph as well as on the existence of
temporal boundaries (start and end), i.e., preceding and
successive foci at which process homogeneity is not
met.
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By Axioms 1, process connectedness is symmetric
and transitive, which means that we need to con-
sider the symmetric transitive closure of the process
graph in order to compute event wholes. However,
since wholes (see Definition 3) on symmetric transi-
tive closures of a directed process graph correspond
to connected components on its undirected equiva-
lent24, we do not need to compute the symmetric
transitive closure. In the following algorithm, the
method .connectedSets() computes event wholes based
on some standard approach for finding connected com-
ponents, such as DFS or BFS. Algorithm 2 finds such
wholes and checks whether they have in-situ begin-
nings/endings or not, and thus whether the whole
corresponds to a partial event or rather a proper
event (compare Definitions 5 and 6). This is done by
going through all foci of each component once and
checking whether the corresponding time series (the
temporally ordered list of foci which are co-located
with the given focus) has a beginning and an end. The
time complexity of this algorithm is therefore linear.
Note that the algorithm also takes into account the
boundary condition (see Definition 8 for WithinTB())
of process simulation as discussed in Section 4.5.3,
rendering an event partial if it does not begin as well
as end within the temporal bounds defined by the
observation window. Without boundary conditions,
the corresponding while-loops could be replaced by
for-loops which simply go through the in-situ time
series.

Once events have been generated, it is possible to
classify and to publish them. The kind of process
simulator underlying event construction always con-
tributes to classify an event. For example, Blizzard
events were generated based on Blizzard processes.
Furthermore, event type specific constraints may need
to be included in the classification. For example, in the
case of Blizzards (Definition 11), there is a minimal
temporal diameter required (4 hours duration). A
corresponding Blizzard classifier is straightforward
and therefore not further discussed here.

7.3 Architecture and Implementation

We have implemented the event detection algorithms
developed above in some prototype which is freely
available here25. The three main class interfaces of this
program are ProcessSimulator, EventConstructor, and
EventClassifier. A process simulator is parameterized
by a ContinuityConditionChecker, and the latter takes
a criterion for a homogeneity condition, such as Def-
inition 3, as well as a continuity condition, such as
Definition 6. It has methods for assessing the spatio-

24. A symmetric, directed process graph (without loops) is equiv-
alent to an undirected graph with the pairs of inverse arcs replaced
by edges. And connected components include exactly those nodes
which are transitively connected to each other in this graph.

25. https://github.com/martinkiesow/eventDetection

Algorithm 2 Event Constructor
Require: processGraph

1: events← [], partial ← f alse, ts← []
2: conComps ← processGraph.connectedSets() {Generates

process connected components}
3: for all (c : conComps) do
4: Set[F]cc← c
5: while f : cc do
6: ts ← getTimeSeries( f ) {Gets the time series of co-

located foci}
7: j← ts.get( f ) {Gets the index of f in ts}
8: right← f alse
9: while ts.get(j).WithinTB() do {Constrains events to

observation window}
10: if ts.get(j) : cc then
11: cc.remove(ts.get(j))
12: else
13: right ← true, break {Left event boundary

detected}
14: j = j + +
15: j← ts.get( f )
16: le f t← f alse
17: while ts.get(j).WithinTB() do
18: if ts.get(j) : cc then
19: cc.remove(ts.get(j))
20: else
21: le f t ← true, break {Right event boundary

detected}
22: j = j−−
23: partial ← le f t ∧ right
24: events.add(newEvent(c, partial))
25: return events

temporal homogeneity neighborhood (spheroid) of a
focus.

Once a process simulator is parametrized by these
conditions, it can take a set of foci with appropriate
attributes and generates a process graph. The event
constructor, in turn, generates event instances from
this graph and determines whether they are partial
or not. The FOL specification proposed in this paper
can be partially translated into Semantic Web stan-
dards such as RDF26 and OWL27. A corresponing
event reference theory28 in OWL can then be used for
event annotation, publishing, and classification. The
ontology allows to express that event instances are
grounded in some foci, which are located (where)
at some spatial geometry encoded as WKT literal
using the GeoSparql ontology29, and (when) at some
time interval encoded in terms of OWL time30 and
corresponding xsd:datetime literals. For specific do-
mains, it is also possible to define classes of events in
OWL and then use reasoners to do automatic event
classification.

26. Resource Description framework, a language standard of the
Semantic Web, see http://www.w3.org/RDF/.

27. http://www.w3.org/TR/owl2-overview/
28. http://www.geographicknowledge.de/vocab/

EventReferenceTheory
29. http://www.opengis.net/ont/geosparql
30. http://www.w3.org/TR/owl-time/
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TABLE 3
Confirmed Blizzard events33

Station beginning ending
Brandon 1964-03-18 16:00 1964-03-19 02:00
Brandon 1964-03-23 10:00 1964-03-23 19:00
Winnipeg 1964-03-23 15:00 1964-03-24 03:00

TABLE 4
In-situ event construction

Event where beginning ending
e1 Brandon 1964-03-18 16:00 1964-03-19 02:00
e2 Brandon 1964-03-23 09:00 1964-03-23 18:00
e3 Winnipeg 1964-03-23 12:00 1964-03-24 02:00
e5 Gimli 1964-03-13 20:00 1964-03-14 02:00
e4 Gimli 1964-03-23 14:00 1964-03-24 10:00
e6 The Pas 1964-03-15 19:00 1964-03-16 06:00
e7 Dauphin 1964-03-23 12:00 1964-03-23 20:00

7.4 Evaluation
We have applied the event detector specified above
to an official dataset of hourly meteorological ground
measurements in Canada31, using data from 5
weather stations in Manitoba (Brandon, Winnipeg,
Gimli, Dauphin, and The Pas) for some period in
1964. From this dataset, we first generated foci by
combining the observed hours in the temporal dimen-
sion (when) and the locations of each weather station
in the spatial dimension (where). Each combination
corresponds to an individual focus, and each data
value corresponds to some meteorological measure-
ment, i.e., the predication of some phenomenon, in-
cluding temperature, visibility, windspeed, humidity,
and windchill.

First, in order to evaluate our constructor, we gen-
erated in-situ blizzard events and compared the result
with blizzard warnings confirmed by Environment
Canada32, which were given as in-situ events for
single sites. The confirmed events are in Table 3, and
the results of our algorithm using the in-situ process
simulator with lag time (Definition 5) is in Table 4.

The close correspondence between these tables
demonstrates that automated blizzard detection is
capable of reproducing meteorological on site assess-
ments. The slight differences in the blizzard lengths
are probably a consequence of taking slightly different
homogeneity criteria into account. Furthermore, our
event detector was able to find some events which
were not considered blizzards by meteorologists, such
as the Gimli, The Pas and Dauphin events in Table 4.
As we will see below, these events may change and
merge to larger ones when additionally taking spatial
homogeneity conditions into account.

Is the approach also capable of identifying events
in space and time? In-situ process simulation, such

31. http://climate.weatheroffice.gc.ca/climateData/
32. http://pnr.hazards.ca/blizzard website/ps blizzard

climatology/prairie events/event log web pages/brandon.htm
33. Taken from http://pnr.hazards.ca/.

TABLE 5
Spatial event construction

Event where beginning ending
es

1 Brandon 1964-03-23 09:00 1964-03-24 00:00
es

1 Winnipeg 1964-03-23 09:00 1964-03-24 10:00
es

1 Dauphin 1964-03-23 09:00 1964-03-23 20:00
es

1 Gimli 1964-03-23 19:00 1964-03-24 10:00
es

2 Gimli 1964-03-13 20:00 1964-03-14 02:00
es

2 Winnipeg 1964-03-13 20:00 1964-03-14 02:00
es

3 Dauphin 1964-03-15 20:00 1964-03-16 06:00
es

3 The Pas 1964-03-15 19:00 1964-03-16 06:00
es

4 Brandon 1964-03-18 16:00 1964-03-19 02:00

as used above, enforces events at different stations
to be different, because the identity criterion for an
event is only temporal. However, from a closer look
at Table 4, one can suspect that the events e2, e3
e4, e7 actually belong to the same larger Blizzard
event, which spatially extends or moves over several
neighboring stations.

Detecting event identity over space requires a
spatio-temporal process simulator, as proposed in
Definition 7. The result of spatial event construction
based on a process simulator with a neighborhood
spheroid of 3 hours and 2.85 degree in the geographic
coordinate system WGS84, and homogeneity condi-
tions defined as before, can be seen in Table 5.

The results show that there is a single large Blizzard
instance which causes subevents at 4 of the 5 stations
(Brandon, Winnipeg, Dauphin, Gimli) on the 23rd of
March, while the other in-situ events are actually due
to different Blizzard instances over Brandon at the
18th, over Gimli and Winnipeg at the 13th, and over
Dauphin and The Pas at the 15th. A spatial event
constructor allows to identify events in space and
time, and this enables to follow the movement of
these event in space. As shown in Figure 6, the single
event es

1 begins in the southern part of Manitoba,
then extends over the four stations, and then moves
towards the East.

8 CONCLUSION

In this paper, we suggested a generalizable formal
blue-print for inferring events based on three logical
levels, namely observations, process simulation and
abstraction procedures. Our approach allows to ex-
press complex identity criteria for events, which are
usually missing in other approaches or stay often im-
plicit. In particular, we showed how temporal identity,
spatial identity and boundary conditions can be handled
(compare the 3 questions in Section 1).

We argued that events can be formally specified as
bounded wholes of simulated process connections on foci.
This approach allows to detail for each of the logical
layers separately how the relevant information may
be inferred. This generates a variety of event abstrac-
tion approaches, ranging from spatio-temporal neigh-
borhood processes (spatial identity), over stationary
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(a) (b) (c) (d)

Fig. 6. Spatial blizzard detection in Manitoba. Movement of event es
1 from 09:00 (a), over 19:00 (b), 20:00 (c) on

the 1964-03-23 to 10:00 (d) on the 1964-03-24

lull periods (temporal identity), to simple threshold
patterns in time series. Boundaries can be specified
in terms of process beginnings and endings and can
be taken into account by boundary conditions. We
showed that ontological event characteristics, such as
homeomericity, follows by construction, and that the
existing practice, e.g., in Meteorology [14], can be cap-
tured by this blue print. Furthermore, we proposed
tractable algorithms which implement it.

What is the scope of application of our work, and
what are its limits? Event construction principles and
identity criteria underlying event inference are often
implicit, and thus not shareable via computers. One
use scenario is therefore the automatic comparison
of distributed event observation sources on the Web.
Further work is needed to translate the formalism
to a tractable subset of FOL which captures identity
criteria, and which can be used to annotate and make
automated comparisons of spatial event datasets on
the Semantic Web and the Semantic Sensor Web [1].
Furthermore, the question remains whether all useful
event construction principles can be expressed in our
framework.
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